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TFET Technologies in E2SWITCH
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Group IV (Jülich)

Si-InAs(IBM Zurich)

GaAsSb-InGaAs(Lund)

EHBTFET (EPFL)

What about 2-D Materials?



Future of TFETs: 2-D Materials?
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B. Radisavljevic et al. Nat. Nano. 6, 147 (2011)  

2-D Semiconductors 

beyond Graphene

Å Excellent electrostatic properties

Å Large range of band gaps and m*

ÅRelatively high phonon-limited mobility

Question: can they be used as TFETs?

Observations:
Å No successful experimental demonstration so far besides 
¦/{.Ωǎ DŜ-MoS2 devices

Å Technology still in its infancy. Progresses needed!

Å Several theoretical studies with various results

Can we estimate their potential?

D. Sarkar et al. Nature 596, 91 (2015)  
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Quantum Transport Model
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Steady-State 1-D/2D/3D Schrödinger Equation

(E - H - SR(E))×GR(E) = I

G<(E) =GR(E)×S<(E)×GA(E)

H ×Y (E) = E ×Y (E)

Quantum Transport: Open Boundary Conditions

Charge Density r (r )

Current I
d
(r )

Ballistic (WF) Scattering (NEGF)

tƻƛǎǎƻƴΩǎ 9ǉǳŀǘƛƻƴ 

(E - H - SR(E))×Y (E) =S(E)



2-D Materials: Complicated Bandstructure
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Possible approaches:

1. Create tight-binding parameter set for MoS2 (what is the accuracy?)

2. DFT+NEGF simulations, but computationally extremely intensive

DFT bandstructure

(PBE because Eg~1.8 eV)

K and Ɇvalleys relatively close to 

each other, in CB and VB

Full-band treatment of MoS2 and 

other 2-Dôs required

Alternative: maximally localized Wannier functions

Eg~1.8 eV



Ab-initio Quantum Transport with MLWFs
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Ab-initio electronic structure 
calculation

Transformation of plane-waves 
into set of maximally localized 
Wannierfunctions (MLWFs)

Creation of tight-binding-like 
Hamiltonian matrix

Quantum transport simulation 
with a MLWF basis



MoS2 Bandstructure: MLWF vs. DFT
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Transformation from plane-wave basis (VASP) into MLWS with Wannier90

Features:

- Exact unitary transformation

- Unitary matrix Umn chosen in such a way 
that  Hamiltonian matrix size is minimal

- MLWs = tight-binding like basis with up 
to 6th nearest-neighbor (NN)

- MoS2: 5d per Mo, 3p per S.

- DFT+GGA: good Eg value


