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Energy Scaling and Need of Steep Slope FETs
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Non-idealities in a Tunnel FET

8
1. Channel
guantization

2. Surface
roughness

3. Band tail states

4. Interface traps

A Working principle of a Tunnel FET

I Band-to-band generation of e-h pairs
I Gate control over the generation rate

A Non-idealities severely degrade
performance of Tunnel FETs
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Channel Quantization
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N Inactive tunnel
AW paths
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% A Delay in the onset of line tunneling.
S A Reduced tunnel rate i lower field, longer tunnel path,
_ and maodified transition matrix element (not modeled)
brain A Modeled with path rejection method* i implemented in

TCAD simulator using nonlocal PMI

*W. Vandenberghet. al. SISPAD 2011, 271.



Trapassisted tunneling in VerticelAsSi TFETs
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Model parameters

A Work function 4.9 eV
A Channel quantization modeled using path rejection method
A Band-to-band tunneling
Nonlocal BTBT model was used
InAs: ms = 0.023, m,, = 0.026
Silicon: m, ,; =0.15
A Trap-assisted tunneling
A Nonlocal TAT model was used
A e, h effective masses in InAs and Si - same as for bulk
A S=3.0and h¥y =0.06 eV
A V.= 50 A3 (InAs/Si)
A V; =10 A3 (InAs/Oxide)
A Multi-phonon excitation process
A G =10 A2 (for both Si and InAs)
A v, =2.04x107 cm/s (Si) and 7.57x107 cm/s (InAs) i temperature-dependent
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VerticalnanowireTFETs

Source

Critical region

Drain

Diameter = 100 nm
I-Si channel length= 100 nm
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Drain Current (uA/um)

Effect of channel quantization and traps
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A Current degradation observed
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to channel quantization
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Individual contributions of TAT mechanisms
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achieve improved performance




Maximum allowabled, in Vertical NW TFET
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Scaling of Radius

InAgoxide interface traps
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Inhibition of Oxide TAT

InAgoxide interface traps
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Conclusions i |

A Trap-assisted tunneling degrades slope of InAs/Si TFETSs.
A Channel quantization degrades the on current of the TFETSs.

A Diameter scaling and gate alignment can yield steep slope InAs/Si
TFETs even in the presence of traps.
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Device Design

All-11I-V Tunnel FET by

Lund university (a) (b) Source
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Composition and Straln Dependence
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A Composition dependence of InGaAsSbi s cal cul ated using
guaternary alloys

A Shift in the band edges due to strain is calculated by Van de Wa | | tleedns

A All the quantities required to model band-to-band tunneling are extracted from
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Trap distributions

INAJOxide trap distribution
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A In InAs, the energetic trap
distribution was clipped off at the
band edges.

A Fitting parameters i
I Trap interaction volume
I Trap energy level in R-1
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Simulation Results

Solid: Simulations

Dashed: Experiments Weak Tdep .

-0.1 0.0 0.2 03

0.1
Gate voltage (V)

A 1-V plots are weakly temperature dependent (except for linear variation of
the work-function)

A Confirms that TAT at oxide interface is absent



